Sabtu, 08 Maret 2014

Saturnus

Dari Wikipedia bahasa Indonesia, ensiklopedia bebasSaturnus adalah sebuah planet di tata surya yang dikenal juga sebagai planet bercincin, dan merupakan
Saturnus  Simbol astronomis Saturnus
Planet Saturn
Saturnus, seperti dilihat oleh wahana Cassini
Penamaan
Nama alternatif Zohal
Ciri-ciri orbit[1][2]
Epos J2000
Aphelion 1.513.325.783 km
10,115 958 04 SA
Perihelion 1.353.572.956 km
9,048 076 35 AU
Sumbu semi-mayor 1.433.449.370 km
9,582 017 20 AU
Eksentrisitas 0,055 723 219
Periode orbit 10.832,327 hari
29,657 296 tahun
Periode sinodis 378,09 hari[3]
Kecepatan orbit rata-rata 9,69 km/s[3]
Anomali rata-rata 320,346 750°
Inklinasi 2,485 240° ke Ekliptika
5,51° ke ekuator Matahari
0,93° ke bidang invariabel[4]
Bujur node menaik 113,642 811°
Argumen perihelion 336,013 862°
Satelit ~ 200 yang teramati (61 dengan orbit yang aman
Ciri-ciri fisik
Jari-jari khatulistiwa 60.268 ± 4 km[5][6]
9,4492 Bumi
Jari-jari kutub 54.364 ± 10 km[5][6]
8,5521 Bumi
Kepepatan 0,097 96 ± 0,000 18
Luas permukaan 4,27×1010 km²[7][6]
83,703 Bumi
Volume 8,2713×1014 km³[3][6]
763,59 Bumi
Massa 5,6846×1026 kg[3]
95,152 Bumi
Massa jenis rata-rata 0,687 g/cm³[3][6]
(kurang dari air)
Gravitasi permukaan di khatulistiwa 8,96 m/s²[3][6]
0,914 g
Kecepatan lepas 35,5 km/s[3][6]
Hari sideris 0,439 – 0,449 hari[8]
(10 j 32 – 47 men)
Kecepatan rotasi 9,87 km/s[6]
35 500 km/jam
Kemiringan sumbu 26,73°[3]
Asensio rekta bagi Kutub Utara 2 jam 42 men 21 det
40.589°[5]
Deklinasi bagi Kutub Utara 83,537°[5]
Albedo 0,342 (terikat)
0,47 (geometrik)[3]
Suhu permukaan
   level 1 bar
   0,1 bar
min rata-rata maks

134 K[3]

84 K[3]
Magnitudo tampak +1,2 sampai -0,24[9]
Diameter sudut 14,5" — 20,1"[3]
(tidak termasuk cincin)
Atmosfer[3]
Tinggi skala 59,5 km
Komposisi
~96% Hidrogen (H2)
~3% Helium
~0,4% Metana
~0,01% Amonia
~0,01% Hidrogen deuterida (HD)
0,000 7% Etana
Es:

Amonia

air

amonium hidrosulfida(NH4SH)
planet terbesar kedua di tata surya setelah Jupiter. Jarak Saturnus sangat jauh dari Matahari, karena itulah Saturnus tampak tidak terlalu jelas dari Bumi. Saturnus berevolusi dalam waktu 29,46 tahun. Setiap 378 hari, Bumi, Saturnus dan Matahari akan berada dalam satu garis lurus. Selain berevolusi, Saturnus juga berotasi dalam waktu yang sangat singkat, yaitu 10 jam 40 menit 24 detik.
Saturnus memiliki kerapatan yang rendah karena sebagian besar zat penyusunnya berupa gas dan cairan. Inti Saturnus diperkirakan terdiri dari batuan padat dengan atmosfer tersusun atas gas amonia dan metana, hal ini tidak memungkinkan adanya kehidupan di Saturnus.
Cincin Saturnus sangat unik, terdiri beribu-ribu cincin yang mengelilingi planet ini. Bahan pembentuk cincin ini masih belum diketahui. Para ilmuwan berpendapat, cincin itu tidak mungkin terbuat dari lempengan padat karena akan hancur oleh gaya sentrifugal. Namun, tidak mungkin juga terbuat dari zat cair karena gaya sentrifugal akan mengakibatkan timbulnya gelombang. Jadi, sejauh ini, diperkirakan yang paling mungkin membentuk cincin-cincin itu adalah bongkahan-bongkahan es meteorit. Cincin ini terentang dari 6.630 km - 120.700 km di atas atmosfer Saturnus.
Hingga 2006, Saturnus diketahui memiliki 56 buah satelit alami. Tujuh di antaranya cukup masif untuk dapat runtuh berbentuk bola di bawah gaya gravitasinya sendiri. Mereka adalah Mimas, Enceladus, Tethys, Dione, Rhea, Titan (Satelit terbesar dengan ukuran lebih besar dari planet Merkurius) dan Iapetus.

Bentuk fisik

Saturnus memiliki bentuk yang diratakan di kutub dan dibengkakkan keluar disekitar khatulistiwa. Diameter khatulistiwa Saturnus sebesar 120.536 km (74.867 mil) dimana diameter dari Kutub Utara ke Kutub Selatan sebesar 108.728 km (67.535 mil), berbeda sebesar 9%. Bentuk yang diratakan ini disebabkan oleh rotasinya yang sangat cepat, merotasi setiap 10 jam 14 menit waktu Bumi. Saturnus adalah satu-satunya Planet di tata surya yang massa jenisnya lebih sedikit daripada air. Walaupun inti Saturnus memiliki massa jenis yang lebih besar daripada air, planet ini memiliki atmosfer yang mengandung gas, sehingga massa jenis relatif planet ini sebesar is 0.69 g/cm³ (lebih sedikit daripada air). Akibatnya, jika Saturnus diletakan di atas kolam yang penuh air, Saturnus akan mengapung.

Atmosfer

Awan heksagonal kutub utara yang pertama dideteksi oleh Voyager 1 dan akhirnya dipastikan oleh Cassini.

Komposisi

Bagian luar atmosfer Saturnus terbuat dari 96.7% hidrogen dan 3% helium, 0.2% metana dan 0.02% amonia. Pada atmosfer Saturnus juga terdapat sedikit kandungan asetilena, etana dan fosfin.[10]

Awan

Awan Saturnus, seperti halnya planet Yupiter, berotasi dengan kecepatan yang berbeda-beda bergantung dari posisi lintangnya. Tidak seperti Yupiter, awan Saturnus lebih redup dan awan Saturnus lebih lebar di khatulistiwa. Awan terendah Saturnus dibuat oleh air es dan dengan ketebalan sekitar 10 kilometer. Temperatur Saturnus cukup rendah, dengan suhu 250 K (-10°F, -23°C). Awan di atasnya, memiliki ketebalan 50 kilometer, terbuat dari es amonium hidrogensulfida (simbol kimia: NH4HS) dan di atas awan tersebut terdapat awan es amonia dengan ketebalan 80 kilometer. Bagian teratas dibuat dari gas hidrogen dan helium, dimana tebalnya sekitar 200 dan 270 kilometer. Aurora juga diketahui terbentuk di mesosfer Saturnus.[10] Temperatur di awan bagian atas Saturnus sangat rendah, yaitu sebesar 98 K (-283 °F, -175 °C). Temperatur di awan bagian dalam Saturnus lebih besar daripada yang diluar karena panas yang diproduksi di bagian dalam Saturn.[11] Angin Saturnus merupakan salah satu dari angin terkencang di Tata Surya, mencapai kecepatan 500 m/s (1.800 km/h, 1.118 mph),[12] yang jauh lebih cepat daripada angin yang ada di Bumi.
Pada Atmosfer Saturnus juga terdapat awan berbentuk lonjong yang mirip dengan awan berbentuk lonjong yang lebih jelas yang ada di Yupiter. Titik lonjong ini adalah badai besar, mirip dengan angin taufan yang ada di Bumi. Pada tahun 1990, Teleskop Hubble mendeteksi awan putih didekat khatulistiwa Saturnus. Badai seperti tahun 1990 diketahui dengan nama Bintik Putih Raksasa, badai unik Saturnus yang hanya ada dalam waktu yang pendek dan muncul setiap 30 tahun waktu Bumi.[13] Bintik Putih Raksasa juga ditemukan tahun 1876, 1903, 1933 dan tahun 1960. Jika siklus konstan ini berlanjut, diprediksi bahwa pada tahun 2020 bintik putih besar akan terbentuk kembali.[14]
Pesawat angkasa Voyager 1 mendeteksi awan heksagonal didekat kutub utara Saturnus sekitar bujur 78° utara. Cassini-Huygens nantinya mengkonfirmasi hal ini tahun 2006. Tidak seperti kutub utara, kutub selatan tidak menunjukan bentuk awan heksagonal dan yang menarik, Cassini menemukan badai mirip dengan siklon tropis terkunci di kutub selatan dengan dinding mata yang jelas. Penemuan ini mendapat catatan karena tidak ada planet lain kecuali Bumi di tata surya yang memiliki dinding mata.

Inti Planet

Inti Planet Saturnus mirip dengan Yupiter. Planet ini memiliki inti planet di pusatnya dan sangat panas, temperaturnya mencapai 15.000 K (26.540 °F, 14.730 °C). Inti Planet Saturnus sangat panas dan inti planet ini meradiasi sekitar 21/2 kali lebih panas daripada jumlah energi yang diterima Saturnus dari Matahari.[11] Inti Planet Saturnus sama besarnya dengan Bumi, namun jumlah massa jenisnya lebih besar. Diatas inti Saturnus terdapat bagian yang lebih tipis yang merupakan hidrogen metalik, sekitar 30.000 km (18.600 mil). Diatas bagian tersebut terdapat daerah liquid hidrogen dan helium.[15] Inti planet Saturnus berat, dengan massa sekitar 9 sampai 22 kali lebih dari massa inti Bumi.[16]

Medan gaya

Saturnus memiliki medan gaya alami yang lebih lemah dari Yupiter. Medan gaya Saturnus unik karena porosnya simetrikal, tidak seperti planet lainnya. Saturnus menghasilkan gelombang radio, namun mereka terlalu lemah untuk dideteksi dari Bumi. satelit dari Saturnus, Titan mengorbit di bagian luar medan gaya Saturnus dan memberikan keluar plasma terhadap daerah dari partikel dari atmosfer Titan yang yang diionisasi.[17]

Rotasi dan orbit

Animasi awan heksagonal Saturnus.
Jarak antara Matahari dan Saturnus lebih dari 1,4 miliar km, sekitar 9 kali jarak antara Bumi dan Matahari. Perlu 29,46 tahun Bumi untuk Saturnus untuk mengorbit Matahari yang diketahui dengan nama periode orbit Saturnus. Saturnus memiliki periode rotasi selama 10 jam 40 menit 24 detik waktu Bumi. Namun, Saturnus tidak merotasi dalam rata-rata yang konstan. Periode rotasi Saturnus tergantung dengan kecepatan rotasi gelombang radio yang dikeluarkan oleh Saturnus. Pesawat angkasa Cassini-Huygens menemukan bahwa emisi radio melambat dan periode rotasi Saturnus meningkat. Tidak diketahui hal apa yang menyebabkan gelombang radio melambat.

Cincin Saturnus

Saturnus terkenal karena cincin di planetnya, yang menjadikannya sebagai salah satu obyek dapat dilihat yang paling menakjubkan dalam sistem tata surya.

Sejarah

Cincin itu pertama sekali dilihat oleh Galileo Galilei pada tahun 1610 dengan teleskopnya, tetapi dia tidak dapat memastikannya. Dia kemudian menulis kepada adipati Toscana bahwa "Saturnus tidak sendirian, tetapi terdiri dari tiga yang hampir bersentuhan dan tidak bergerak. Cincin itu tersusun dalam garis sejajar dengan zodiak dan yang di tengah (Saturnus) adalah tiga kali besar yang lurus (penjuru cincin)". Dia juga mengira bahwa Saturnus memiliki "telinga." Pada tahun 1612 sudut cincin menghadap tepat pada bumi dan cincin tersebut akhirnya hilang dan kemudian pada tahun 1613 cincin itu muncul kembali, yang membuat Galileo bingung.
Persoalan cincin itu tidak dapat diselesaikan sehingga 1655 oleh Christian Huygens, yang menggunakan teleskop yang lebih kuat daripada teleskop yang digunakan Galileo.
Pada tahun 1675 Giovanni Domenico Cassini menentukan bahwa cincin Saturnus sebenarnya terdiri dari berbagai cincin yang lebih kecil dengan ruang antara mereka, bagian terbesar dinamakan Divisi Cassini.
Pada tahun 1859, James Clerk Maxwell menunjukan bahwa cincin tersebut tidak padat, namun terbuat dari partikel-partikel kecil, yang mengorbit Saturnus sendiri-sendiri dan jika tidak, cincin itu akan tidak stabil atau terpisah.[18] James Keeler mempelajari cincin itu menggunakan spektrometer tahun 1895 yang membuktikan bahwa teori Maxwell benar.

Bentuk fisik cincin Saturnus

Saturnus yang terlihat dari pesawat angkasa Cassini tahun 2007.
Cincin Saturnus tersebut dapat dilihat dengan menggunakan teleskop modern berkekuatan sederhana atau dengan teropong berkekuatan tinggi. Cincin ini menjulur 6.630 km hingga 120.700 km atas khatulistiwa Saturnus dan terdiri daripada bebatuan silikon dioksida, oksida besi dan partikel es dan batu. Terdapat dua teori mengenai asal cincin Saturnus. Teori pertama diusulkan oleh Édouard Roche pada abad ke-19, yang menyatakan bahwa cincin tersebut merupakan bekas satelit Saturnus yang orbitnya datang cukup dekat dengan Saturnus sehingga pecah akibat kekuatan pasang surut. Variasi teori ini adalah satelit tersebut pecah akibat hantaman dari komet atau asteroid. Teori kedua adalah cincin tersebut bukanlah dari satelit Saturnus, tetapi ditinggalkan dari nebula asal yang membentuk Saturnus. Teori ini tidak diterima masa kini disebabkan cincin Saturnus dianggap tidak stabil melewati periode selama jutaan tahun dan dengan itu dianggap baru terbentuk.
Sementara ruang terluas di cincin, seperti Divisi Cassini dan Divisi Encke, dapat dilihat dari Bumi, Voyagers mendapati cincin tersebut mempunyai struktur seni yang terdiri dari ribuan bagian kecil dan cincin kecil. Struktur ini dipercayai terbentuk akibat tarikan graviti satelit-satelit Saturnus melalui berbagai cara. Sebagian bagian dihasilkan akibat satelit kecil yang lewat seperti Pan dan banyak lagi bagian yang belum ditemukan, sementara sebagian cincin kecil ditahan oleh medan gravitas satelit penggembala kecil seperti Prometheus dan Pandora. Bagian lain terbentuk akibat resonansi antara periode orbit dari partikel di beberapa bagian dan bahwa satelit yang lebih besar yang terletak lebih jauh, pada Mimas terdapat divisi Cassini melalui cara ini, justru lebih berstruktur dalam cincin sebenarnya terdiri dari gelombang berputar yang dihasilkan oleh gangguan gravitas satelit secara berkala.

Jari-jari

Jari-jari di cincin Saturnus, difoto oleh pesawat angkasa Voyager 2.
Voyager menemukan suatu bentuk seperti ikan pari di cincin Saturnus yang disebut jari-jari. Jari-jari tersebut terlihat saat gelap ketika disinari sinar Matahari dan terlihat terang ketika ada dalam sisi yang tidak diterangi sinar Matahari. Diperkirakan bahwa jari-jari tersebut adalah debu yang sangat kecil sekali yang naik keatas cincin. Debu itu merotasi dalam waktu yang sama dengan magnetosfer planet tersebut dan diperkirakan bahwa debu itu memiliki koneksi dengan elektromagnetisme. Namun, alasan utama mengapa jari-jari itu ada masih tidak diketahui.
Cassini menemukan jari-jari tersebut 25 tahun kemudian. Jari-jari tersebut muncul dalam fenomena musiman, menghilang selama titik balik Matahari.

Satelit alami

Titan, salah satu satelit milik Saturnus
Saturnus memiliki 59 satelit alami, 48 di antaranya memiliki nama. Banyak satelit Saturnus yang sangat kecil, dimana 33 dari 50 satelit memiliki diameter lebih kecil dari 10 kilometer dan 13 satelit lainnya memiliki diameter lebih kecil dari 50 km.[19] 7 satelit lainnya cukup besar untuk, dimana satelit tersebut adalah Titan, Rhea, Iapetus, Dione, Tethys, Enceladus dan Mimas. Titan adalah satelit terbesar, lebih besar dari planet Merkurius dan satu-satunya satelit di atmosfer yang memiliki atmosfer yang tebal. Hyperion dan Phoebe adalah satelit terbesar lainnya, dengan diameter lebih besar dari 200 km.
Di Titan, satelit terbesar Saturnus, satelit Desember tahun 2004 dan satelit Januari tahun 2005 banyak foto Titan diambil oleh Cassini-Huygens. 1 bagian dari satelit ini, yaitu Huygens mendarat di Titan.

Eksplorasi

Zaman kuno dan observasi

Saturnus telah diketahui sejak zaman prasejarah.[20] Pada zaman kuno, planet ini adalah planet terjauh dari 5 planet yang diketahui di tata surya (termasuk Bumi) dan merupakan karakter utama dalam berbagai mitologi. Pada mitologi Kekaisaran Romawi, Dewa Saturnus, dimana nama Planet ini diambil dari namanya, adalah dewa pertanian dan panen.[21] Orang Romawi menganggap Saturnus sama dengan Dewa Yunani Kronos.[21] Orang Yunani mengeramatkan planet terluar untuk Kronos,[22] dan orang Romawi mengikutinya.
Pada astrologi Hindu, terdapat 9 planet dimana Tata Surya diketahui dengan nama Navagraha. Saturnus, salah satu dari mereka, diketahui dengan nama "Sani" atau "Shani," hakim dari semua Planet dan menentukan seluruhnya menurut kelakuan baik atau buruk yang mereka lakukan.[21] Kebudayaan Tiongkok dan Jepang kuno menandakan Saturnus sebagai bintang Bumi (土星). Hal ini berdasarkan 5 elemen yang secara tradisional digunakan untuk mengklasifikasikan elemen alami. Orang Ibrani kuno menyebut Saturnus dengan nama "Shabbathai". Malaikatnya adalah Cassiel. Kepintarannya, atau jiwa bermanfaat, adalah Agiel (layga) dan jiwanya (jiwa gelap) adalah Zazel (lzaz). Orang Turki Ottoman dan orang Melayu menamainya "Zuhal", berasal dari bahasa Arab زحل.
Cincin Saturnus membutuhkan paling sedikit teleskop dengan diameter 75 mm untuk menemukannya dan cincin tersebut tidak diketahui sampai ditemukan oleh Galileo Galilei tahun 1610.[23] Galileo sempat bingung dengan cincin Saturnus dan mengira bahwa Saturnus bertelinga. Christian Huygens menggunakan teleskop dengan perbesaran yang lebih besar dan ia menemukan bahwa cincin itu adalah cincin Saturnus. Huygens juga menemukan satelit dari Saturnus, Titan. Tidak lama, Giovanni Domenico Cassini menemukan 4 satelit lainnya, Iapetus, Rhea, Tethys dan Dione. Pada tahun 1675, Cassini juga menemukan celah yang disebut dengan divisi Cassini.[24]
Tidak ada penemuan lebih lanjut sampai tahun 1789 ketika William Herschel menemukan 2 satelit lagi, Mimas dan Enceladus. satelit Hyperion, yang memiliki resonansi orbit dengan Titan, ditemukan tahun 1848 oleh tim dari Britania Raya.
Pada tahun 1899, William Henry Pickering menemukan satelit Phoebe. Selama abad ke-20, penelitian terhadap Titan mengakibatkan adanya konfirmasi pada tahun 1944 bahwa Titan memiliki atmosfer yang tebal, dimana Titan menjadi satelit yang unik di antara satelit di Tata Surya lainnya.

Pioneer 11

Saturnus dikunjungi oleh Pioneer 11 pada satelit September tahun 1979. Pioner 11 terbang 20.000 kilometer dari ujung awan Saturnus. Gambar Saturnus dan beberapa satelitnya dengan resolusi rendah didapat. Resolusi gambar tersebut tidak bagus untuk melihat fitur permukaan. Pesawat udara juga mempelajari cincin Saturnus, di antara penemuan-penemuan, terdapat penemuan cincin-F dan fakta bahwa celah gelap di cincin terang jika dilihat kearah Matahari, dalam kata lain, mereka bukan material kosong. Pioneer 11 juga mengukur temperatur Titan.[25]

Voyager

Pada bulan November tahun 1980, Voyager 1 mengunjungi sistem Saturnus. Pesawat ini mengirim kembali gambar Planet, cincin dan satelitnya dalam resolusi besar. Fitur permukaan berbagai satelit dilihat pertama kali. Voyager 1 melakukan penerbangan dekat dengan Titan dan meningkatkan pengetahuan manusia atas Titan, selain itu, Voyager 1 juga membuktikan bahwa atmosfer Titan tidak dapat dilalui dalam panjang gelombang yang dapat dilihat, sehingga, tidak ada detail tentang permukaan Titan.[26]
1 tahun kemudian, pada bulan Agustus tahun 1981, Voyager 2 melanjutkan penelitian sistem Saturnus. Lebih banyak foto satelit-satelit Saturnus jarak dekat yang didapat. Namun terjadi ketidakberuntungan, selama penerbangan, kamera satelit tersangkut untuk beberapa hari dan beberapa pengambilan gambar yang direncanakan hilang. Graviti Saturnus digunakan untuk mengarahkan lintasan pesawat angkasa tersebut menuju Uranus.[26]
Satelit tersebut menemukan dan memperjelas beberapa satelit baru yang mengorbit di dekat cincin Saturnus. Mereka juga menemukan celah kecil Maxwell dan Keeler (celah seluas 42 km di cincin Saturnus).

Cassini

Gambaran Artis tentang Cassini yang sedang mengorbit Saturnus.
Posisi-posisi Saturnus: 2001–2029
Pada tanggal 1 Juli 2004, pesawat angkasa Cassini–Huygens melakukan manuver SOI (Saturn Orbit Insertion) dan memasuki orbit sekitar Saturnus. Sebelum SOI, Cassini telah mempelajari sistem ini. Pada bulan Juni tahun 2004, Cassini telah melakukan penerbangan dekat ke Phoebe dan memberikan data dan gambar dengan resolusi besar.
Penerbangan Cassini ke satelit terbesar Titan telah menangkap gambar danau besar dan pantai serta beberapa pulau dan pegunungan. Cassini menyelesaikan 2 penerbangan Titan sebelum mengeluarkan satelit Huygens pada tanggal 25 Desember 2004. Huygens turun ke permukaan Titan pada tanggal 14 Januari 2005, mengirim data selama turun ke atmosfer dan pendaratan. Selama tahun 2005, Cassini melakukan beberapa penerbangan ke Titan dan satelit yang mengandung es. Penerbangan Cassini ke Titan yang terakhir dijadwalkan pada tanggal 19 Juli 2007.
Sejak awal tahun 2005, ilmuan telah meneliti tentang petir di Saturnus, yang ditemukan oleh Cassini. Kekuatan petir di Saturnus diperkirakan 1000 kali lebih besar daripada petir di Bumi. Para ilmuan percaya bahwa badai ini adalah badai terkuat yang pernah terlihat.[27]
Pada tanggal 10 Maret 2006, NASA melaporkan bahwa, melalui gambar, satelit Cassini menemukan fakta-fakta tentang cairan air yang meletus di geiser di salah satu satelit Saturnus, Enceladus. Gambar tersebut juga menunjukan partikel air di cairan tersebut dipancarkan oleh pancaran es. Menurut Dr. Andrew Ingersoll dari Institut Teknologi California, "satelit lainnya di tata surya memiliki samudera cairan air yang ditutup oleh es. Apa yang berbeda disini adalah bahwa cairan air tidak akan lebih dari 10 meter dibawah permukaan."[28]
Pada tanggal 20 September 2006, sebuah foto dari satelit Cassini menemukan cincin Saturnus yang belum ditemukan, diluar cincin utama Saturnus yang lebih bercahaya dan di dalam cincin G dan E. Cincin ini merupakan hasil dari tabrakan meteor dengan 2 satelit Saturnus.[29]
Pada bulan Juli tahun 2006, Cassini melihat bukti pertama danau hidrokarbon didekat kutub utara Titan, yang dikonfirmasi pada bulan Januari tahun 2007. Pada bulan Maret tahun 2007, beberapa gambar didekat kutub utara Titan menemukan "lautan" hidrokarbon, yang terbesar dimana besarnya hampir sebesar Laut Kaspia.[30]
Pada tahun 2006, satelit itu telah menemukan dan mengkonfirmasi 4 satelit baru. Misi utama satelit ini akan berakhir tahun 2008 ketika pesawat angkasa akan diperkirakan menyelesaikan 74 misi mengelilingi orbit disekitar planet. Namun satelit itu diperkirakan baru menyelesaikan setidak-tidaknya satu misi.

Penglihatan paling baik

Saturnus adalah planet terjauh dari 5 planet yang paling mudah dilihat dengan mata telanjang dan 4 planet lainnya adalah Merkurius, Venus, Mars dan Yupiter (Uranus dan 4 Vesta terlihat dengan mata telanjang ketika langit gelap) dan planet terakhir yang diketahui oleh astronom awal sampai Uranus ditemukan tahun 1781. Saturnus muncul dalam penglihatan mata telanjang pada saat langit malam sebagai titik terang dan berwarna kuning. Bantuan optik (teleskop) perlu diperbesar setidak-tidaknya 20X untuk melihat cincin Saturnus bagi banyak orang.[31]

Catatan kaki

  1. ^ Yeomans, Donald K. (2006-07-13). "HORIZONS System". NASA JPL. Diakses 2007-08-08. — At the site, go to the "web interface" then select "Ephemeris Type: ELEMENTS", "Target Body: Saturn Barycenter" and "Center: Sun".
  2. ^ Orbital elements refer to the barycenter of the Saturn system, and are the instantaneous osculating values at the precise J2000 epoch. Barycenter quantities are given because, in contrast to the planetary centre, they do not experience appreciable changes on a day-to-day basis from to the motion of the moons.
  3. ^ a b c d e f g h i j k l m Williams, Dr. David R. (September 7, 2006). "Saturn Fact Sheet". NASA. Diakses 2007-07-31.
  4. ^ "The MeanPlane (Invariable plane) of the Solar System passing through the barycenter". 2009-04-03. Diarsipkan dari aslinya tanggal 2009-04-20. Diakses 2009-04-10. (produced with Solex 10 written by Aldo Vitagliano; see also Invariable plane)
  5. ^ a b c d Seidelmann, P. Kenneth; Archinal, B. A.; A’hearn, M. F.; et.al. (2007). "Report of the IAU/IAGWorking Group on cartographic coordinates and rotational elements: 2006". Celestial Mech. Dyn. Astr. 90: 155–180. doi:10.1007/s10569-007-9072-y.
  6. ^ a b c d e f g h Refers to the level of 1 bar atmospheric pressure
  7. ^ NASA: Solar System Exploration: Planets: Saturn: Facts & Figures
  8. ^ Than, Ker (September 6, 2007). "Length of Saturn's Day Revised". Space.com. Diakses 2007-09-06.
  9. ^ Schmude, Richard W Junior (2001). "Wideband photoelectric magnitude measurements of Saturn in 2000". Georgia Journal of Science. Diakses 2007-10-14.
  10. ^ a b Saturn. MIRA. Retrieved on July 29, 2007
  11. ^ a b Spinrad, Hyron. (2004). Saturn. National Aeronautics and Space Administration. Retrieved on July 29, 2007
  12. ^ Hamilton, Calvin J. (1997). Voyager Saturn Science Summary. Retrieved on July 5, 2007.
  13. ^ S. PĂ©rez-Hoyos, A. SĂ¡nchez-Lavega, R.G. Frenchb, J.F. Rojas. (2005). Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994–2003). Retrieved on July 24, 2007
  14. ^ Patrick Moore, ed., 1993 Yearbook of Astronomy, (London: W.W. Norton & Company, 1992), Mark Kidger, "The 1990 Great White Spot of Saturn", pp. 176-215.
  15. ^ Saturn. National Maritime Museum. (2007). Retrieved on July 29, 2007.
  16. ^ Fortney, Jonathan J. (2004). "Looking into the Giant Planets". Science 305 (5689): 1414-1415. Retrieved on April 30, 2007.
  17. ^ Russell, C. T.; Luhmann, J. G. (1997). Saturn: Magnetic Field and Magnetosphere. UCLA - IGPP Space Physics Center. Retrieved on July 29, 2007.
  18. ^ James Clerk Maxwell on the nature of Saturn's rings. Retrieved on July 6, 2007.
  19. ^ Saturn Satellite and Moon Data. Institute for Astronomy. Retrieved on May 23, 2007.
  20. ^ "Saturn > Observing Saturn". National Maritime Museum. Diakses 2007-07-06.
  21. ^ a b c "Starry Night Times". Imaginova Corp. 2006. Diakses 2007-07-05.
  22. ^ James Evans (1998). The History and Practice of Ancient Astronomy. Oxford University Press. hlm. 296–7.
  23. ^ Chan, Gary (2000). "Saturn: History Timeline". Diakses 2007-07-16.
  24. ^ Catherine. "Saturn: History of Discoveries". Diakses 2007-07-15.
  25. ^ "The Pioneer 10 & 11 Spacecraft". Mission Descriptions. Diakses 2007-07-05.
  26. ^ a b "Missions to Saturn". The Planetary Society. 2007. Diakses 2007-07-24.
  27. ^ "Astronomers Find Giant Lightning Storm At Saturn". ScienceDaily LLC. 2007. Diakses 2007-07-27.
  28. ^ Pence, Michael (March 9, 2006). "NASA's Cassini Discovers Potential Liquid Water on Enceladus". NASA Jet Propulsion Laboratory. Diakses 2007-07-08.
  29. ^ Shiga, David (September 20, 2007). "Faint new ring discovered around Saturn". NewScientist.com. Diakses 2007-07-08.
  30. ^ Rincon, Paul (March 14, 2007). "Probe reveals seas on Saturn moon". BBC. Diakses 2007-07-12.
  31. ^ "Saturn". National Maritime Museum. Diakses 2007-07-06.

sejarah perkembangan komputer

Komputer


Bagian-bagian Komputer Personal.
1: Monitor
2: Papan induk
3: Pemroses
4: Slot ATA
5: Memori Akses Acak (MAA)
6: Slot PCI
7: Catu Daya
8: Tempat cakram optik
9: Cakram keras
10: Papan Tombol
11: Tetikus
Komputer adalah alat yang dipakai untuk mengolah data menurut prosedur yang telah dirumuskan. Kata computer semula dipergunakan untuk menggambarkan orang yang perkerjaannya melakukan perhitungan aritmatika, dengan atau tanpa alat bantu, tetapi arti kata ini kemudian dipindahkan kepada mesin itu sendiri. Asal mulanya, pengolahan informasi hampir eksklusif berhubungan dengan masalah aritmatika, tetapi komputer modern dipakai untuk banyak tugas yang tidak berhubungan dengan matematika.
Dalam arti seperti itu terdapat alat seperti slide rule, jenis kalkulator mekanik mulai dari abakus dan seterusnya, sampai semua komputer elektronik yang kontemporer. Istilah lebih baik yang cocok untuk arti luas seperti "komputer" adalah "yang mengolah informasi" atau "sistem pengolah informasi." Selama bertahun-tahun sudah ada beberapa arti yang berbeda dalam kata "komputer", dan beberapa kata yang berbeda tersebut sekarang disebut disebut sebagai komputer.
Kata computer secara umum pernah dipergunakan untuk mendefiniskan orang yang melakukan perhitungan aritmatika, dengan atau tanpa mesin pembantu. Menurut Barnhart Concise Dictionary of Etymology, kata tersebut digunakan dalam bahasa Inggris pada tahun 1646 sebagai kata untuk "orang yang menghitung" kemudian menjelang 1897 juga digunakan sebagai "alat hitung mekanis". Selama Perang Dunia II kata tersebut menunjuk kepada para pekerja wanita Amerika Serikat dan Inggris yang pekerjaannya menghitung jalan artileri perang dengan mesin hitung.
Charles Babbage mendesain salah satu mesin hitung pertama yang disebut mesin analitikal. Selain itu, berbagai alat mesin sederhana seperti slide rule juga sudah dapat dikatakan sebagai komputer.

Jenis

Jenis

Global Digital Divide1.png
Sekalipun demikian, definisi di atas mencakup banyak alat khusus yang hanya bisa memperhitungkan satu atau beberapa fungsi. Ketika mempertimbangkan komputer modern, sifat mereka yang paling penting yang membedakan mereka dari alat menghitung yang lebih awal ialah bahwa, dengan pemrograman yang benar, semua komputer dapat mengemulasi sifat apa pun (meskipun barangkali dibatasi oleh kapasitas penyimpanan dan kecepatan yang berbeda), dan, memang dipercaya bahwa mesin sekarang bisa meniru alat perkomputeran yang akan kita ciptakan pada masa depan (meskipun niscaya lebih lambat). Dalam suatu pengertian, batas kemampuan ini adalah tes yang berguna karena mengenali komputer "maksud umum" dari alat maksud istimewa yang lebih awal. Definisi dari "maksud umum" bisa diformulasikan ke dalam syarat bahwa suatu mesin harus dapat meniru Mesin Turing universal. Mesin yang mendapat definisi ini dikenal sebagai Turing-lengkap, dan yang pertama mereka muncul pada tahun 1940 di tengah kesibukan perkembangan di seluruh dunia. Lihat artikel sejarah perkomputeran untuk lebih banyak detail periode ini.

Komputer benam

Pada sekitar 20 tahun yang lalu , banyak alat rumah tangga, khususnya termasuk panel dari permainan video tetapi juga mencakup telepon genggam, perekam kaset video, PDA dan banyak sekali dalam rumahtangga, industri, otomotif, dan alat elektronik lain, semua berisi sirkuit elektronik yang seperti komputer yang memenuhi syarat Turing-lengkap di atas (dengan catatan bahwa program dari alat ini seringkali dibuat secara langsung di dalam chip ROM yang akan perlu diganti untuk mengubah program mesin). Komputer maksud khusus lainnya secara umum dikenal sebagai "mikrokontroler" atau "komputer benam" (embedded computer). Oleh karena itu, banyak yang membatasi definisi komputer kepada alat yang maksud pokoknya adalah pengolahan informasi, daripada menjadi bagian dari sistem yang lebih besar seperti telepon, oven mikrowave, atau pesawat terbang, dan bisa diubah untuk berbagai maksud oleh pemakai tanpa modifikasi fisik. Komputer kerangka utama, minikomputer, dan komputer pribadi (PC) adalah macam utama komputer yang mendapat definisi ini.

Komputer pribadi

Komputer pribadi atau personal computer (PC) adalah istilah untuk komputer yang dikenal dan diketahui orang pada umumnya sehingga banyak orang yang tak akrab dengan bentuk komputer lainnya. Hanya orang-orang tertentu saja yang memakai istilah ini secara eksklusif untuk menunjukkan istilah yang lebih spesifik dan tepat.

Bagaimana komputer bekerja

Saat teknologi yang dipakai pada komputer digital sudah berganti secara dramatis sejak komputer pertama pada tahun 1940-an (lihat Sejarah perangkat keras menghitung untuk lebih banyak detail), komputer kebanyakan masih menggunakan arsitektur Von Neumann, yang diusulkan pada awal 1940-an oleh John von Neumann.
Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama: Unit Aritmatika dan Logis (ALU), unit kontrol, memori, dan alat masukan dan hasil (secara kolektif dinamakan I/O). Bagian ini dihubungkan oleh berkas kawat, "bus"

Memori


modul memori RAM
Di sistem ini, memori adalah urutan byte yang dinomori (seperti "sel" atau "lubang burung dara"), masing-masing berisi sepotong kecil informasi. Informasi ini mungkin menjadi perintah untuk mengatakan pada komputer apa yang harus dilakukan. Sel mungkin berisi data yang diperlukan komputer untuk melakukan suatu perintah. Setiap slot mungkin berisi salah satu, dan apa yang sekarang menjadi data mungkin saja kemudian menjadi perintah.
Memori menyimpan berbagai bentuk informasi sebagai angka biner. Informasi yang belum berbentuk biner akan dipecahkan (encoded) dengan sejumlah instruksi yang mengubahnya menjadi sebuah angka atau urutan angka-angka. Sebagai contoh: Huruf F disimpan sebagai angka desimal 70 (atau angka biner) menggunakan salah satu metode pemecahan. Instruksi yang lebih kompleks bisa digunakan untuk menyimpan gambar, suara, video, dan berbagai macam informasi. Informasi yang bisa disimpan dalam satu sell dinamakan sebuah byte.
Secara umum, memori bisa ditulis kembali lebih jutaan kali - memori dapat diumpamakan sebagai papan tulis dan kapur yang dapat ditulis dan dihapus kembali, daripada buku tulis dengan pena yang tidak dapat dihapus.
Ukuran masing-masing sel, dan jumlah sel, berubah secara hebat dari komputer ke komputer, dan teknologi dalam pembuatan memori sudah berubah secara hebat - dari relay elektromekanik, ke tabung yang diisi dengan air raksa (dan kemudian pegas) di mana pulsa akustik terbentuk, sampai matriks magnet permanen, ke setiap transistor, ke sirkuit terpadu dengan jutaan transistor di atas satu chip silikon.

Pemrosesan

Unit Pengolah Pusat atau CPU (Central processing Unit) berperan untuk memproses perintah yang diberikan oleh pengguna komputer, mengelolanya bersama data-data yang ada di komputer. Unit atau peranti pemprosesan juga akan berkomunikasi dengan peranti input , output dan storage untuk melaksanakan instruksi yang saling terkait.

Dalam arsitektur von Neumann yang asli, ia menjelaskan sebuah Unit Aritmatika dan Logika, dan sebuah Unit Kontrol. Dalam komputer-komputer modern, kedua unit ini terletak dalam satu sirkuit terpadu (IC - Integrated Circuit), yang biasanya disebut CPU (Central Processing Unit).
Unit Aritmatika dan Logika, atau Arithmetic Logic Unit (ALU), adalah alat yang melakukan pelaksanaan dasar seperti pelaksanaan aritmatika (tambahan, pengurangan, dan semacamnya), pelaksanaan logis (AND, OR, NOT), dan pelaksanaan perbandingan (misalnya, membandingkan isi sebanyak dua slot untuk kesetaraan). Pada unit inilah dilakukan "kerja" yang sebenarnya.
Unit kontrol menyimpan perintah saat ini yang dilakukan oleh komputer, memerintahkan ALU untuk melaksanaan dan mendapatkan kembali informasi (dari memori) yang diperlukan untuk melaksanakan perintah itu, dan memindahkan kembali hasil ke lokasi memori yang sesuai. Unit ini berfungsi mengontrol pembacaan instruksi program komputer.

Masukan dan hasil

I/O membolehkan komputer mendapatkan informasi dari dunia luar, dan menaruh hasil kerjanya di sana, dapat berbentuk fisik (hardcopy) atau non fisik (softcopy). Ada berbagai macam alat I/O, dari yang akrab keyboard, monitor dan disk drive, ke yang lebih tidak biasa seperti webcam (kamera web, pencetak, pemindai, dan sebagainya.
Yang dimiliki oleh semua alat masukan biasa ialah bahwa mereka meng-encode (mengubah) informasi dari suatu macam ke dalam data yang bisa diolah lebih lanjut oleh sistem komputer digital. Alat output, men-decode data ke dalam informasi yang bisa dimengerti oleh pemakai komputer. Dalam pengertian ini, sistem komputer digital adalah contoh sistem pengolah data.

Instruksi

Perintah yang dibicarakan di atas bukan perintah seperti bahasa manusiawi. Komputer hanya mempunyai perintah sederhana dalam jumlah terbatas yang dirumuskan dengan baik. Perintah biasa yang dipahami kebanyakan komputer ialah "menyalin isi sel 123, dan tempat tiruan di sel 456", "menambahkan isi sel 666 ke sel 042, dan tempat akibat di sel 013", dan "jika isi sel 999 adalah 0, perintah berikutnya anda di sel 345".
Instruksi diwakili dalam komputer sebagai nomor - kode untuk "menyalin" mungkin menjadi 001, misalnya. Suatu himpunan perintah khusus yang didukung oleh komputer tertentu diketahui sebagai bahasa mesin komputer. Dalam praktiknya, orang biasanya tidak menulis perintah untuk komputer secara langsung di bahasa mesin tetapi memakai bahasa pemrograman "tingkat tinggi" yang kemudian diterjemahkan ke dalam bahasa mesin secara otomatis oleh program komputer khusus (interpreter dan kompiler). Beberapa bahasa pemrograman berhubungan erat dengan bahasa mesin, seperti assembler (bahasa tingkat rendah); di sisi lain, bahasa seperti Prolog didasarkan pada prinsip abstrak yang jauh dari detail pelaksanaan sebenarnya oleh mesin (bahasa tingkat tinggi)

Arsitektur

Komputer kontemporer menaruh ALU dan unit kontrol ke dalam satu sirkuit terpadu yang dikenal sebagai Unit Pemroses Sentral atau CPU. Biasanya, memori komputer ditempatkan di atas beberapa sirkuit terpadu yang kecil dekat UPS. Alat yang menempati sebagian besar ruangan dalam komputer adalah ancilliary sistem (misalnya, untuk menyediakan tenaga listrik) atau alat I/O.
Beberapa komputer yang lebih besar berbeda dari model di atas di satu hal utama - mereka mempunyai beberapa UPS dan unit kontrol yang bekerja secara bersamaan. Terlebih lagi, beberapa komputer, yang dipakai sebagian besar untuk maksud penelitian dan perkomputeran ilmiah, sudah berbeda secara signifikan dari model di atas, tetapi mereka sudah menemukan sedikit penggunaan komersial.
Fungsi dari komputer secara prinsip sebenarnya cukup sederhana. Komputer mencapai perintah dan data dari memorinya. Perintah dilakukan, hasil disimpan, dan perintah berikutnya dicapai. Prosedur ini berulang sampai komputer dimatikan.

Program

Program komputer adalah daftar besar perintah untuk dilakukan oleh komputer, barangkali dengan data di dalam tabel. Banyak program komputer berisi jutaan perintah, dan banyak dari perintah itu dilakukan berulang kali. Sebuah komputer pribadi modern yang umum (pada tahun 2003) bisa melakukan sekitar 2-3 miliar perintah dalam sedetik. Komputer tidak mendapat kemampuan luar biasa mereka lewat kemampuan untuk melakukan perintah kompleks. Tetapi, mereka melakukan jutaan perintah sederhana yang diatur oleh orang pandai, pemrogram."Programmer Baik memperkembangkan set-set perintah untuk melakukan tugas biasa (misalnya, menggambar titik di layar) dan lalu membuat set-set perintah itu tersedia kepada programmer lain". Sekarang ini, kebanyakan komputer dapat melakukan beberapa program sekaligus. Ini biasanya diserahkan ke sebagai multitasking. Pada kenyataannya, UPS melakukan perintah dari satu program, kemudian setelah beberapa saat, UPS beralih ke program kedua dan melakukan beberapa perintahnya. Jarak waktu yang kecil ini sering diserahkan ke sebagai irisan waktu (time-slice). Ini menimbulkan khayal program lipat ganda yang dilakukan secara bersamaan dengan memberikan waktu UPS di antara program. Ini mirip bagaimana film adalah rangkaian kilat saja masih membingkaikan. Sistem operasi adalah program yang biasanya menguasai kali ini membagikan

Sistem operasi

Sistem operasi adalah semacam gabungan dari potongan kode yang berguna. Ketika semacam kode komputer dapat dipakai secara bersama oleh beraneka-ragam program komputer, setelah bertahun-tahun, pemrogram (programmer) akhirnya memindahkannya ke dalam sistem operasi.
Sistem operasi, menentukan program mana yang akan dijalankan, kapan, dan alat yang mana (seperti memori atau I/O) yang mereka gunakan. Sistem operasi juga memberikan layanan (service) kepada program lain, seperti kode yang membolehkan pemrogram untuk menulis program untuk suatu mesin tanpa perlu mengetahui detail dari semua alat elektronik yang terhubung pada komputer.

Penggunaan komputer


Anak-anak sedang belajar penggunaan komputer bersama sang guru.
Komputer digital pertama, memiliki ukuran yang besar dan membutuhkan biaya besar untuk pembuatannya. Komputer pada masa itu umumnya digunakan untuk mengerjakan perhitungan ilmiah. ENIAC, komputer awal AS semula didesain untuk memperhitungkan tabel ilmu balistik untuk persenjataan (artileri), menghitung kerapatan penampang neutron untuk melihat jika bom hidrogen akan bekerja dengan semestinya (perhitungan ini, yang dilakukan pada Desember 1945 sampai Januari 1946 dan melibatkan dala dalam lebih dari satu juta kartu punch, memperlihatkan bentuk lalu di bawah pertimbangan akan gagal). CSIR Mk 1/CSIRAC, komputer pertama Australia, mengevaluasi pola curah hujan untuk tempat penampungan dari Snowy Mountains, suatu proyek pembangkitan Hidroelektrik besar. Selain itu juga dipakai dalam kriptanalisis, misalnya komputer elektronik digital yang pertama, Colossus, dibuat selama Perang Dunia II. Akan tetapi, visionaris awal juga menyangka bahwa pemrograman itu akan membolehkan main catur, memindahkan gambar dan penggunaan lain.
Orang-orang di pemerintah dan perusahaan besar juga memakai komputer untuk mengotomasikan banyak koleksi data dan mengerjakan tugas yang sebelumnya dikerjakan oleh manusia - misalnya, memelihara dan memperbarui rekening dan inventaris. Dalam bidang pendidikan, ilmuwan di berbagai bidang mulai memakai komputer untuk analisis mereka sendiri. Penurunan harga komputer membuat mereka dapat dipakai oleh organisasi yang lebih kecil. Bisnis, organisasi, dan pemerintah sering menggunakan amat banyak komputer kecil untuk menyelesaikan tugas bahwa dulunya dilakukan oleh komputer kerangka utama yang mahal dan besar. Kumpulan komputer yang lebih kecil di satu lokasi diserahkan ke sebagai perkebunan server.
Dengan penemuan mikroprosesor di 1970-an, menjadi mungkin menghasilkan komputer yang sangat murah. PC menjadi populer untuk banyak tugas, termasuk menyimpan buku, menulis dan mencetak dokumen. Perhitungan meramalkan dan lain berulang matematika dengan lembatang sebar, berhubungan dengan e-pos dan, Internet. Namun, ketersediaan luas komputer dan mudah customization sudah melihat mereka dipakai untuk banyak maksud lain.
Sekaligus, komputer kecil, biasanya dengan mengatur memrogram, mulai menemukan cara mereka ke dalam alat lain seperti peralatan rumah, mobil, pesawat terbang, dan perlengkapan industri. Yang ini prosesor benam menguasai kelakuan alat seperti itu yang lebih mudah, membolehkan kelakuan kontrol yang lebih kompleks (untuk kejadian, perkembangan anti-kunci rem di mobil). Saat abad kedua puluh satu dimulai, kebanyakan alat listrik, kebanyakan bentuk angkutan bertenaga, dan kebanyakan batas produksi pabrik dikuasai di samping komputer. Kebanyakan insinyur meramalkan bahwa ini cenderung kepada akan terus.

Bagian-bagian komputer

Komputer terdiri atas 2 bagian besar yaitu perangkat lunak (software) dan perangkat keras (hardware).

Perangkat keras

  • Pemroses atau CPU sebagai unit yang mengolah data
  • Memori RAM, tempat menyimpan data sementara
  • Hard drive, media penyimpanan semi permanen
  • Perangkat masukan, media yang digunakan untuk memasukkan data untuk diproses oleh UPS, seperti mouse, keyboard, dan tablet
  • Perangkat keluaran, media yang digunakan untuk menampilkan hasil keluaran pemrosesan CPU, seperti monitor,speaker,plotter,proyektor dan printer

Perangkat lunak

  • Sistem operasi
    Program dasar pada komputer yang menghubungkan pengguna dengan hardware komputer. Sistem operasi yang biasa digunakan adalah Linux, Windows, dan Mac OS. Tugas sistem operasi termasuk (namun tidak hanya) mengatur eksekusi program di atasnya, koordinasi input, output, pemrosesan, memori, serta instalasi software.
  • Program komputer
    Merupakan aplikasi tambahan yang dipasang sesuai dengan sistem operasinya

Slot pada komputer

  • ISA/PCI, slot untuk masukan kartu tambahan non-grafis
  • AGP/PCIe, slot untuk masukan kartu tambahan grafis
  • IDE/SCSI/SATA, slot untuk hard drive/ODD
  • USB, slot untuk masukan media plug-and-play (colok dan mainkan, artinya perangkat yang dapat dihubungkan ke komputer dan langsung dapat digunakan)

Jenis komputer